Improving feature extraction by replacing the Fisher criterion by an upper error bound
نویسندگان
چکیده
A lot of alternatives and constraints have been proposed in order to improve the Fisher criterion. But most of them are not linked to the error rate, the primary interest in many applications of classification. By introducing an upper bound for the error rate a criterion is developed which can improve the classification performance.
منابع مشابه
Improving Chernoff criterion for classification by using the filled function
Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملFeature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion
Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...
متن کاملEnhanced Direct Linear Discriminant Analysis for Feature Extraction on High Dimensional Data
We present an enhanced direct linear discriminant analysis (EDLDA) solution to effectively and efficiently extract discriminatory features from high dimensional data. The EDLDA integrates two types of class-wise weighting terms in estimating the average within-class and between-class scatter matrices in order to relate the resulting Fisher criterion more closely to the minimization of classific...
متن کاملSt Reading Nonlinear Feature Extraction Using Fisher Criterion
In this paper the problem of nonlinear feature extraction based on the optimization of the Fisher criterion is analyzed. A new nonlinear feature extraction method is proposed. The 15 method does not make use of numerical algorithms and it has an analytical (closed-form) solution. Moreover, no assumptions on the class probability distribution functions are 17 imposed. The proposed method is appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 38 شماره
صفحات -
تاریخ انتشار 2005